Human GM-CSF HEK293 Overexpression Lysate

Price:
Size:
Number:

Human GM-CSF HEK293 Overexpression Lysate: 产品信息

产品描述
This Human GM-CSF overexpression lysate was created in HEK293 Cells and intented for use as a Western blot (WB) positive control. Purification of GM-CSF protein (Cat: 10015-HNAH) from the overexpression lysate was verified.
表达宿主
HEK293 Cells
种属
Human
蛋白构建信息
A DNA sequence encoding human GMCSF (NP_000749.2) (Met1-Glu144) was expressed.
分子量
The recombinant human GMCSF consists of 127 amino acids and predicts a molecular mass of 14.5 kDa. It migrates as an approximately 23.8 kDa band in SDS-PAGE under reducing conditions.

Human GM-CSF HEK293 Overexpression Lysate: 使用指南

制备方法
Cell lysate was prepared by homogenization of the over-expressed cells in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
裂解缓冲液
Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
使用建议
1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min.
缓冲液
1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
稳定性 & 储存条件
Store at 4℃ for up to twelve months from date of receipt. After re-dissolution, aliquot and store at -80℃ for up to twelve months. Avoid repeated freeze-thaw cycles.
应用
Western Blot (WB)
Optimal dilutions/concentrations should be determined by the end user.

Human GM-CSF HEK293 Overexpression Lysate: 别称

Human CSF2 Overexpression Lysate; Human GM-CSF Overexpression Lysate; Human GMCSF Overexpression Lysate

GM-CSF 背景信息

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of an array of cytokines with pivotal roles in embryo implantation and subsequent development. Several cell lineages in the reproductive tract and gestational tissues synthesise GM-CSF under direction by ovarian steroid hormones and signalling agents originating in male seminal fluid and the conceptus. The pre-implantation embryo, invading placental trophoblast cells and the abundant populations of leukocytes controlling maternal immune tolerance are all subject to GM-CSF regulation. GM-CSF stimulates the differentiation of hematopoietic progenitors to monocytes and neutrophils, and reduces the risk for febrile neutropenia in cancer patients. GM-CSF also has been shown to induce the differentiation of myeloid dendritic cells (DCs) that promote the development of T-helper type 1 (cellular) immune responses in cognate T cells. The active form of the protein is found extracellularly as a homodimer, and the encoding gene is localized to a related gene cluster at chromosome region 5q31 which is known to be associated with 5q-syndrome and acute myelogenous leukemia. As a part of the immune/inflammatory cascade, GM-CSF promotes Th1 biased immune response, angiogenesis, allergic inflammation, and the development of autoimmunity, and thus worthy of consideration for therapeutic target. GM-CSF has been utilized in the clinical management of multiple disease processes. Most recently, GM-CSF has been incorporated into the treatment of malignancies as a sole therapy, as well as a vaccine adjuvant. While the benefits of GM-CSF in this arena have been promising, recent reports have suggested the potential for GM-CSF to induce immune suppression and, thus, negatively impact outcomes in the management of cancer patients. GM-CSF deficiency in pregnancy adversely impacts fetal and placental development, as well as progeny viability and growth after birth, highlighting this cytokine as a central maternal determinant of pregnancy outcome with clinical relevance in human fertility.
全称
colony stimulating factor 2 (granulocyte-macrophage)
参考文献
  • Robertson SA. (2007) GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev. 18(3-4): 287-98.
  • Waller EK. (2007) The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist. 12 Suppl 2: 22-6.
  • Clive KS, et al. (2010) Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental? Expert Rev Vaccines. 9(5): 519-25.
添加购物车成功! 添加购物车失败!请再次尝试 正在更新购物车,请稍后